Coppock's Model

The Coppock solution is a classical analytic solubf internal ballistic equations. This modelasiid in
the classic reference "Theory of the Internal Batlts of Guns”, by J. Corner (1950). The equatares
based on the following assumptions:

e The powder mass burn rate is proportional to tlant¥er pressure and the surface area of the

powder.

The surface area of the powder is computed agrisbu

The powder burns at the breech pressure.

The increasing volumes behind the bullet with bogriime and bullet movement is taken into

account.

The pressure gradient between breech and bulletiva®mputed and assumed to be constant

depending on the charge weight to bullet weighorat

e The powder energy content, geometry, gas heat itgjaacl ideal gas corrections are used in the
solution.

¢ Frictional and recoil losses are estimated bymgigie bullet mass by 5%.

e Heat loss to the barrel is estimated by the Thdrnteéthod and used in the solution.

The Theory

Burn Rate

In order to predict the rate of gas production frafmurning propellant grain, we need to make some
assumption about how the powder grain burns, betimgtrically and thermodynamically. If the burning
is a surface effect, the burn rate might be propoal to the number of molecules hitting the swefathis
would mean it would be proportional to the pressune temperature. The temperature of the burning is
determined by the energy of combustion and the ¢egacity of the products and would be constang. Th
burn rate could then be expressed as a rate comslating how fast the flame front burns in a $ng
dimension per unit pressure. A more general exjmesscorporates a pressure exponent parameter that
need not be unity. Piobert postulated that theibgraf a powder grain occurs in parallel layersrirthe
surface to the interior. This has been shown ta peetty good approximation by observation of jadiyti
burned grains of powder. The rate of gas produgtidhen related to the surface area of the gtherate
constant and pressure. The surface area may chatingéhe burning depending on the geometry of the
grain. If we designate the minimum burning dimengbthe powder grain as "D" and "f* as the fraatio
of "D" that is left unburned, the reduction of tienension "D" at any time is (1-f)*D. The burn rase
therefore -D*df/dt which is equal to the linear buate constant (beta) times the pressure (P).

-D*df/dt = beta*P (1)
The Form Function

Now the effect of the grain shape must be takemactount. The mass of gas produced will be egual t
the mass of powder that has burned which wouldrbpgstional to the volume of the powder grain that
has burned. If we say "z" is the mass or volumetifva of of the powder burned (or gas producednth

z = (initial volume - vol. at time "t")/(initial iome)

Now "z" can be calculated as a function of "f* ¥@rious shapes. A tubular shape with wall thicki/€s's
and average radius "R", and length "L":

initial volume = 2*pi*R*D*L



at "t", the wall thickness is D-(1-f)*D = f*D
the length is L-(1-f)*D , so

vol at "t" = 2*pi*R*f*d*(L-(1-f)*D)

and

z = (1-f)(2+f*DIL)

This led to defining a general form function
z = (1-f)*(1+theta*f) (2)

where theta is the form factor and can range frbmo -+1. A form factor of O implies a constant albean
surface, such as with a tubular powder with a lemgich greater than the wall thickness. Long solid
cylindrical stick powder such as cordite has a féantor of 1. Multiperforated powder actually inases
in surface area with burning and has a negativa factor. Ball powder would follow the equation z =
(2-H"3 and is not easily modeled by the quadraegjaation 2. Flake or disk powder has a cubic tastn b
can be approximated by equation (2) with a theta/@f/2) where L is the diameter of the disk ordém
of the flake. The quadratic form of equation (2pwak the analytic solution of the model which woblel
much more difficult or impossible if we includeatabic term. There are more serious difficultieshwit
modeling ball powders than the form function, hoamsuch as the use of burn rate retardants.

Progressivity and Retardants

A progressive powder is one with a negative thta, is the burning area increases with burn tidne.
degressive one is the opposite, like cordite oespal powder, where the surface area decreases
substantially with burn time. Retardants are adegithat are diffused into the powder grain from th
outer surface that reduce the initial burn ratthefpowder. This is has the effect of renderingpitveder
more progressive, and is used especially withgmaliders to make them less degressive. A progressive
powder has the advantage of producing a higheageguressure to peak pressure ratio than degressive
powders, thus giving higher bullet speeds for &gigeak pressure. In order to model the actioheof t
retardant it would be necessary to introduce "basad function of "f* and solve the system numdgica
Coppock's model cannot handle the effect of retdsdaxcept by adjusting the value of "theta" aretdh

Analytic vs Numeric Solutions

One could point out that with the computer powetilable now, there is no reason to constrain our
assumptions to those necessary to solve the egaaimlytically, and simply do them numericallytwét
step by step process. This is quite true, but timeamic solution has its own set of difficultiesaeercome
and a analytic solution is very useful in testing tonvergence and accuracy of a numeric moded. Thi
analytic solution has been found to offer usefllisons and is a good starting point, so it hambee
presented here. It also has the advantage of festey to compute so it can be programmed into a
graphing pocket calculator, for example, which vadooé too slow with a numeric model.

The Equation of Motion
The equation of motion of the shot (bullet) cambigten immediately:
Ps(x)*A = w*dv/dt (3)

The pressure at the base of the shot (as a funationthe shot travel distance) times the areth@fshot
base would give the accelerating force which eqgtiesnass (w) of the shot times the acceleration.



The Ideal Gas Equation

In freshman chemistry we learned the ideal gastemua
PV=nRT

which relates pressure, temperature, volume arfdthvt number of moles of gas "n" and the gas cohsta
"R". The equation works best for small moleculeloat pressures. Some correction is needed at gte hi
pressures experienced in a gun, so we will addatsolume” term (b), a simplified version of VaniDe
Waal's semi-empirical ideal gas corrected equatatied the Alfred-Nobel equation:

P*(V-b) = nRT

If we divide both sides by the mass of the gas &te g

P*(V-b)/m = R*n/m*T

If V and b are in units of volume per unit masgas$ the equation becomes
P*(V-b) = RImw*T

where mw is the molecular weight of the gases (rpassnole). The covolume can be thought of as a
correction for the finite volume of the gas molesul

The Force Constant

If the powder is burning at constant volume withhaat loss, the gas equation yields
P(V-b) = R/mw*T0

where TO is the product gas temperature. The hghtl side is a constant that depends on the malecul
weight and the gas combustion temperature andsigrkged as the Force constant "F". This is aledca
Impetus by some powder companies.

F = R/Imw*TO

and has units of energy per unit mass.

The Adiabatic Expansion

The term adiabatic implies a boundary which heahoacross. In other words all the energy of an
adiabatic expansion is provided by or given togas, and results in the gas gaining or losing teatpe
according to the definition of heat capacity:

E=n*Cv*(TO-T)

where E is the energy absorbed or provided by #ise Qv is the heat capacity of the gas at constant
volume ( the gas does no work at constant volumes the temperature difference. "n" is the amadint
gas so Cv would be heat capacity per unit amougasf The above equation written in differentiahfo
would be:

dE = n*Cv*dT
Since work is equal to force times distance orguestimes volume:

dE = P*dV



and n*Cv*dT = -P*dV

The minus sign indicates that the temperature ohagt when doing the expansion work. Substitutirgy th
ideal gas equation gives:

n*Cv*dT = -nRT*dV/V which separating the variablgves
CvxdT/T = -R*dV/V

It can be shown that for an ideal gas, Cp - Cv wRere Cp is the heat capacity at constant preskure
we apply heat to a gas at constant pressure, itexpand to keep the constant pressure, so itingdo
pressure-volume work - which explains why Cp isaggethan Cv. The ratio of Cp/Cv is commonly
referred to as "gamma”. Substituting gamma we have:

R/(gamma-1) = Cv

which is really the definition of gamma in the nioleal gas case. After integrating we have:
In(T2/T1) = -(gamma-1)*In(\¢/V 1) or

To/T1 = (V1/V2)9@MMa-D)or fom the ideal gas law

Pp*V 198MMa- pyxyy ,gamma

The above results are important when solving ttermal ballistic problem after the powder is burnt,

which is basically an adiabatic expansion caseu#t there is heat loss to the barrel, but thatloa
accounted for by adjusting gamma.

Energy of an adiabatic expansion.
The integral of P*dV is the energy of an expansknom above
P = I:?*Vigamma* V(-gamma)

where P is the pressure at volume V and Vi, Pigggmt the initial volume and pressure. Integra@igyV
from Vi to V gives the energy of expansion to vorim.

E = integral(f*V 92MMay, (9aMMa}qy/ y from Vi to V
= P*V i/(1-gamma)*[(V/\)(1-9amma)_ |
The Energy equation

The work done by the gas in the internal ballipticblem goes into heating the barrel, and doing
pressure-volume expansion work, part of which tesualthe acceleration of the bullet. The work dbgie
the gas can then be equated in terms of the hpatitaand temperature difference from above to the
pressure volume work and heat loss:

C*z/mw*Cv*(TO-T) = A*integral(P*dx) + Eh
C is the powder charge, z is the mass fractioraef go C*z = m, the mass of gas.

m/mw = n.



This energy is equal to the pressure volume woredwy the gas plus the heat lost to the barrel. (Hig
Pressure times area (A) is force, and the integridrce over the distance is work. Substituting ou
equation of state P*(V-b)=RT/mw, eliminating T.

C*z/mw*Cv*TO = C*z*Cv*P*(V-b)/R + A*integral(P*dx) + Eh

substituting for Cv from:

(gamma-1) = R/Cv

C*z*R/mw*T0/(gamma-1) = C*z*P*(V-b)/(gamma-1) + Antegral(P*dx)+Eh
and introducing force constant F=R/mw*TO

F*C*z/(gamma-1) = P*C*z*(V-b)/(gamma-1) + A*integi@*dx) + Eh

V is the volume per unit mass, so C*z*V is the tet@lume occupied by the gas, which is equal to the
chamber volume "K" minus the volume of the solidp®llant plus the volume of the bore behind the
bullet A*x. So if "d" is the density of the propaiit, then

C*z*V = K + A*x - C*(1-z)/d

So the energy balance equation becomes:

F*C*z/(gamma-1) = P/(gamma-1)*(K+A*x-C/d-C*z*(b-1Jif-A*int(P*dx)+Eh

Since K-C/d is the initial free space in the casecan write

K-C/d = A*L, where L is the effective length of tlfiee space

in the chamber as if it were the same cross sexdtamea as the bore. Then we can write:
1. F*C*z/(gamma-1) = P/(gamma-1)*(A*(x+L)-C*z*(b-1/d}

A*int(P*dx) + Eh

If the Eh is neglected and the pressure P in tpharmsion integral is assumed to be the pressuhe dtase
of the shot, the resultant equation is known asFResquation.

The Lagrange Pressure Gradient

The pressure in Equation 4 should be taken asviirage pressure since it was derived from the exuat
of state of the gases. We cannot equate this peegssth the pressure at the base of the shot tevitke
the equation of motion of the shot, since theré¢ lvala pressure gradient from the breech of thetgaime
base of the shot due to the inertia of the powdseg. Lagrange solved this problem by considering a
volume element at position "sigma" where sigmafigetion of the distance from the breech to that sh
base. In this manner the sigma (designated heés)as independent of time. If V is the volumeaay
moment between breech and shot base (the voluthe iowder is ignored), then s*V will be the volume
behind the cross section at "s". A volume elemefrg"awill have a mass of p*V*ds where p is the dign
(rho) of the gas. The velocity of the element wél s*v where v is the velocity of the shot. The
momentum of the volume element is then s*v*p*V*dke time derivative of the momentum gives the
inertial force which is equal to the force from gressure on the section so:

d(p*V*v*s*ds)/dt = -A*dP/ds * ds or

s*d(p*V*v)/dt = -A*dP/ds



where P is the pressure. Integrating this frommedsure P to the shot base at pressure Ps,ige4; g
A*(P-Ps) = integral( d(p*V*v)/dt *s*ds )

Now substitute the equation of motion A*Ps=w*dvfoit dt

(P-Ps)/Ps = integral( d(p*V*v)/dv *s/w*ds)

Since the pressure gradient is small in propottbotine absolute pressure, the variation of theitlets'
with s is neglected so p*V = C*z and integratinges:

(P-Ps)/Ps = C/(2w)*d(z*v)/dv*(1-s"2)

If the above equation is solved for the breechqunesPb, where s=0, and the result combined wéh th
original equation:

P-Ps = (1-s"2)*(Pb-Ps)

The average pressure Pm is determined by the altegr

Pm = integral( P*ds) from s=0 to s=1.

If this is done using P from the above equatioa,résult is:

Pm = 1/3*(2*Pb + Ps)

Also from above when solving for Pb at s=0 z=1 and

Pb/Ps = (1-C/(2*w))

thus giving the relationship between average, breec shot base pressure:
Ps = Pb/(1+C/(2*w)) = Pm/(1+C/(3*w))

This approximation neglects the fluid friction bktgas which may be important at high velocities, a
also neglects the gas density variation, the powdierme and movement, and is really derived based o
an all burnt charge. The extra friction towardsingzzle cancels the errors near the breach to some
extent, so the net result of the approximatiorréitp good. The kinetic energy of the gases cafotwed

by integrating the kinetic energy of volume elensemter s similar to what was done above so:

KEgas = integral( 1/2*p*V*s"2*v"2*ds ) from O to 1
which using p*V=C*z again gives:

KEgas = 1/6*C*z*v"2

Energy equation continued

Let us consider the expansion energy term in Eqoati This energy represents the kinetic energy and
rotational energy of the projectile, the frictiohaéses, the kinetic energy of the gas, lossesaltexoil of
the gun and even the strain energy in expandinguhebarrel. Another factor is the bullet engraving
energy which may be appreciable especially in [@stompared to the available powder energy.
Coppock's model assumes that of 5% of the energyedbullet goes into friction and recoil (1 or 2 %
effect). The other losses are very small. The iarat energy is about 0.5%, and the strain enexdgss
than a percent and are neglected. The frictioakiert into account by increasing the mass of thietooy
the 5%. This implies that the friction is propora to the force on the bullet base, which is notgood
an assumption since there would be a componentihat be fairly independent of the pressure or



position of travel down the bore. The assumptiamsisd since it makes the problem solvable analltica
The engrave force is not taken into account inttioslel and would be an important factor to include
more advanced model. The kinetic energy of the owdses was shown to be 1/6*C*v/2, (at all burnt)
S0 combining these terms:

Afint(P*dx) = 1/2*(W*1.05)*v 2 + 1/6*C*v2

These terms can be combined into a single kineecgy term:

1/2*w1*v~2 |, where wl = 1.05*w + 1/3*C

Next, adding Eh, the heat loss to the barrel ireBResquation:

F*C*z/(gamma-1) = P/(gamma-1)*(A*(x+L)-C*z*(b-1/d)} 1/2*w1*v"2 + Eh

If we play a similar game with Eh, and write itaafraction "k" of the kinetic energy term
Eh = k*1/2*w1*v"2

then

F*C*z = P*(A*(x+L)-C*z*(b-1/d)) + (gamma-1)*(1+k)*12*w1*v/ 2

Thus, if we define a new gamma, "gammap" that waeldh essence the effective gamma, we could
retain the original form of the Resal's equation if

(gammap-1) = (gamma-1)*(1+k)

From above, k = Eh/Es where Es = 1/2*w1*v"2

Then

(4) F*C*z = P*(A*(x+L)-C*z*(b-1/d)) + (gammap-1)*12*w1*v"2

This manipulation implies that the heat loss atiasyant is equal to a constant fraction (k) ofshet
energy. This assumption has been shown to be goaaund 20%. This does not imply that the error in
calculating the velocities and pressures are #ngel however, since the net energy balance maght b
quite good. The problem is that to compute

Es = 1/2*w1*v"2

we need to know the final bullet velocity "v". Theogram achieves this by iterating the calculation
several times, using the computed final velocitpafstimate each time until convergence is actieve
The value of Eh, the total heat loss to the basrealculated using Thornhill's semi-empirical farian
which is a function of the powder charge, (T-T0)d d&he bore dimensions. Thornhill's equation is the
only empirical estimate used in this program.

Thornhill equation

Thornhill derived a formula based on test firingsnbined with theoretical results for the total Heat to
the barrel (cal) of a gun as:

Eh =10.13*H*d*Vol/A
where H=.0127*T*sqrt(d)*R

and T is the maximum temperature of the barrel



d is the bore diameter (in)

A is the area of the bore (in*2)

Vol is the total volume of the gun (in"3)

R is a hydrodynamic roughness factor which rangas fL.25 in big guns to 1.4 or more in small arms
T = (T0-300)/(1.7+0.38*d".5%(d"2/C)"0.86)

where ambient is 300 deg K

C is the charge in Ibs

This reduces to the following in ft*lbs units:

Eh = 0.397*d"(3/2)*Vol/A*T*R
Summary of the Equations

There are 4 basic equations that describe themsyat€oppock’'s model:
1) The powder burn rate equation.
-D*df/dt = beta*Pb (1)

2) A powder form function that relates mass of geluced to the linear fraction of the powder gtaat
has burned.

z = (1-f)*(1+theta*f) (2)

3) The equation of motion.

Ps(x)*A = w*dv/dt (3)

4) The equation of state or energy balance.

(4) F*C*z/(gammap-1) = Pm/(gammap-1)*(A*(x+L)-C*z5¢1/d)) +
1/2*w1*v"2

The effect of covolume and powder density:

It is interesting to consider the effect of incluglithese terms. Equation 4 contains the term (p-f/d =
1/d then the whole term drops out and the equadisimplified considerably. Many early treatmenits o
the problem have made this assumption. In reahliycovolume "b" is around .95 cc/g and 1/d is adou
0.62 cc/g and its net effect would be to incre&sectfective force constant of a simplified equatiy
about 10%. Note that if one were to include thecfbf the increase in volume due to the burninggeso
solid, and neglect covolume, that the result wdnddvorse than neglecting both effects. The effeth®
initial volume displaced by the solid powder isiaportant effect in either case.

Coppock's Solution

Equation 1 and 3 by substituting for Pb and Ps fileenLagrange relation and integrating yields:

(5) v = A*D*(1-f)/(beta*(w+1/2*C))



giving velocity as a function of fraction burned."At "all burnt”, f=0 and the velocity can be read
directly. The final velocity can be computed frome tresult of the following "adiabatic" expansiont b
one needs to know the "x" value at all burnt ineorib figure the expansion ratio from that poirtieT
other 3 equations can be combined and simplifieaddferential equation with unitless coefficielis
defining the following:

b_av is the breech to average pressure ratio
b_av=(1+C/(2.*w*1.05))/(1+C/(3.*w*1.05))
M = A*A*D*D/(beta”2*b_av"2*w1*F*C)
thetal = theta + 1/2(gammap-1)*M

Z =1 - (gammap-1)*M/2 + thetal*f

B = (b-1/d)/(A*L)

This is the resultant diff. eq.

(6) Z*dx/df + M*(x+L) = M*B*L*z

Integrating this gives "X" as a function of "f"pm which we get "x" at all burnt (f=0) or "xb".
Equation 4 and 5 give:

(7) A*Pm*(x + L*(1-Bz)) = C*F*Z*(1-f)

giving the pressure as a function of "x" and "fanabining (6) and (7) and taking dP/df = O gives the
maximum pressure, but this gets a bit involved. déails are not presented here, but the complete
formulas are available in the Mathcad(TM) examplge only thing left is to compute the adiabatic
expansion from the all burnt point. The adiabatipassion equation gives:

P = Pb*(V/Vb)*(-gammap)

where V is the total volume behind the bullet ariwli¥’the volume at all burnt.
VIVb = (x + L*(1-B))/(xb + L*(1-B))

and the final velocity is:

vA2 = C*F/wl1l*(M + Zb*Phi)

where Phi = 2/(gammap-1)*(1-(V/Vb)*(1-gammap)),

and Zb is Z at all burnt.



